National Repository of Grey Literature 5 records found  Search took 0.00 seconds. 
Exact spacetimes and their physical properties
Veselý, Jiří ; Žofka, Martin (advisor) ; Hennigar, Robie (referee) ; Tahamtan, Tayebeh (referee)
Motivated by our desire to find generalizations of the Bonnor-Melvin spacetime, the thesis investigates seven static, cylindrically-symmetric and electrovacuum exact solutions to the Einstein-Maxwell equations. They contain a magnetic field and six of them also include the cosmological constant. After discussing some of the methods we use during our investigation, we present the basic properties of the spacetimes, and for each of them we also study charged test particle motion and their admissible shell sources composed of particle streams. We also perform numerical computations to determine whether the equations admit more general solutions than the exact ones we derived. 1
Helical symmetry and the non-existence of asymptotically flat periodic solutions in general relativity
Scholtz, Martin ; Bičák, Jiří (advisor) ; Krtouš, Pavel (referee) ; Fraundiener, Jörg (referee)
1 Title Helical symmetry and the non-existence of asymptotically flat periodic solutions in general relativity Author Martin Scholtz Department Institute of theoretical physics Faculty of Mathematics and Physics Charles University in Prague Supervisor Prof. RNDr. Jiří Bičák, DrSc., dr. h.c. Abstract. No exact helically symmetric solution in general relativity is known today. There are reasons, however, to expect that such solutions, if they exist, cannot be asymptotically flat. In the thesis presented we investigate a more general question whether there exist periodic asymptotically flat solutions of Einstein's equations. We follow the work of Gibbons and Stewart [3] who have shown that there are no periodic vacuum asymptotically flat solutions an- alytic near null infinity I. We discuss necessary corrections of Gibbons and Stewart proof and generalize their results for the system of Einstein-Maxwell, Einstein-Klein-Gordon and Einstein-conformal-scalar field equations. Thus, we show that there are no asymptotically flat periodic space-times analytic near I if as the source of gravity we take electromagnetic, Klein-Gordon or conformally invariant scalar field. The auxilliary results consist of corresponding confor- mal field equations, the Bondi mass and the Bondi massloss formula for scalar fields. We also...
Selected exact spacetimes in Einstein's gravity
Ryzner, Jiří ; Žofka, Martin (advisor) ; McNutt, David D. (referee) ; Pravdová, Alena (referee)
The aim of this thesis is to construct exact, axially symmetric solutions of Einstein- Maxwell(-dilaton) equations, which possess a discrete translational symmetry along an axis. We present two possible approaches to their construction. The first one is to solve Einstein-Maxwell equations, the second one relies on a dimensional reduction from a higher dimension. We examine the geometry of the solutions, their horizons and singu- larities, motions of charged test particles and compare them. 1
Statistical tests for VaR and CVaR
Mirtes, Lukáš ; Pešta, Michal (advisor) ; Večeř, Jan (referee)
The thesis presents test statistics of Value-at-Risk and Conditional Value-at-Risk. The reader is familiar with basic nonparametric estimators and their asymptotic distributions. Tests of accuracy of Value-at- Risk are explained and asymptotic test of Conditional Value-at-Risk is derived. The thesis is concluded by process of backtesting of Value-at-Risk model using real data and computing statistical power and probability of Type I error for selected tests. Powered by TCPDF (www.tcpdf.org)
Helical symmetry and the non-existence of asymptotically flat periodic solutions in general relativity
Scholtz, Martin ; Bičák, Jiří (advisor) ; Krtouš, Pavel (referee) ; Fraundiener, Jörg (referee)
1 Title Helical symmetry and the non-existence of asymptotically flat periodic solutions in general relativity Author Martin Scholtz Department Institute of theoretical physics Faculty of Mathematics and Physics Charles University in Prague Supervisor Prof. RNDr. Jiří Bičák, DrSc., dr. h.c. Abstract. No exact helically symmetric solution in general relativity is known today. There are reasons, however, to expect that such solutions, if they exist, cannot be asymptotically flat. In the thesis presented we investigate a more general question whether there exist periodic asymptotically flat solutions of Einstein's equations. We follow the work of Gibbons and Stewart [3] who have shown that there are no periodic vacuum asymptotically flat solutions an- alytic near null infinity I. We discuss necessary corrections of Gibbons and Stewart proof and generalize their results for the system of Einstein-Maxwell, Einstein-Klein-Gordon and Einstein-conformal-scalar field equations. Thus, we show that there are no asymptotically flat periodic space-times analytic near I if as the source of gravity we take electromagnetic, Klein-Gordon or conformally invariant scalar field. The auxilliary results consist of corresponding confor- mal field equations, the Bondi mass and the Bondi massloss formula for scalar fields. We also...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.